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One of the fundamental aspects of statistical behaviour in many-body systems is
exponential divergence of neighbouring orbits, which is often discussed in terms
of Liapounov exponents. Here we study this topic for the classical gravitational
N-body problem. The application we have in mind is to old stellar systems such
as globular star clusters, where N ’ 106, and so we concentrate on spherical,
centrally concentrated systems with total energy E < 0. Hitherto no connection
has been made between the time scale for divergence (denoted here by te) and
the time scale on which the energies of the particles evolve because of two-body
encounters (i.e., the two-body relaxation time scale, tr), even though both may
be calculated by similar considerations. In this paper we give a simplified model
showing that divergence in phase space is initially roughly exponential, on a
timescale proportional to the crossing time (defined as a mean time for a star to
cross from one side of the system to another). In this phase te ° tr, if N is not
too small (i.e., N± 30). After several e-folding times, the model shows that the
divergence slows down. Thereafter the divergence (measured by the energies of
the bodies) varies with time as t1/2, on a timescale nearly proportional to the
familiar two-body relaxation timescale, i.e., te ’ tr in this phase. These conclu-
sions are illustrated by numerical results.
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1. INTRODUCTION

The classical gravitational N-body problem is defined by the equations

r̈i=−G C
N

j=1
j ] i

mj
ri− rj
|ri− rj |3

(1)



Fig. 1. Spatial distribution of bodies in a typical simulation. On left is a snapshot, and on
the right is the numerically generated space density as a function of radius.

where ri is the three-dimensional position vector of the ith star, mi is its
mass, and G is the universal constant of gravitation. We consider applica-
tions in which the total energy, E, in the barycentric frame is negative and
the total angular momentum is negligible. Starting from a rather broad set
of initial conditions, such solutions settle down into a roughly spherical
distribution of bodies in approximate ‘‘dynamic equilibrium’’ (Fig. 1), i.e.,
the spatial distribution is nearly time-independent on the time scale of the
orbital motions of the particles.
Early numerical integrations (1) with N [ 32 showed that a small

change in initial conditions led to a roughly exponential divergence of
solutions (measured in 6N-dimensional phase space), even though the
spatial distribution of the bodies in the two solutions might be indistin-
guishable within statistical fluctuations. The timescale of divergence, te, was
of order the crossing time, tcr, defined in a certain conventional way as the
time for a body with a typical speed to move a distance comparable to the
size, R, of the spatial distribution of the particles. (2) Thus

tcr ’
R
V
, (2)
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where V is the root mean square speed of the particles. Later work (3–5)

extended numerical results to larger N, and Goodman et al. (3) devised
theoretical models confirming that te/tcr is virtually independent of N.
One particular statistical specification of the initial conditions which

has been studied is the Plummer model, which is often used in stellar
dynamics for the study of relaxation and related processes. It is the stellar
dynamical analogue of the n=5 polytrope. For this model it has been
found (4) that

te 4
0.116tcr

ln(0.73 lnN)
.

The functional form is suggested by a theoretical model, (3) and the coeffi-
cients are not thought to depend sensitively on the initial conditions.
Therefore for large star clusters generally we have

te ’ 0.05tcr. (3)

The theoretical models of Goodman et al. (3) dealt with the linear
divergence of neighbouring solutions, when the separation in position of
the ith body satisfies the variational equation

dr̈i=−G C
N

j=1
j ] i

mj 1
dri−drj
|ri− rj |3

−
(dri−drj) · (ri− rj)

|ri− rj |5
(ri− rj)2 . (4)

For practical purposes, however (e.g., for understanding the growth of
errors in a numerical integration) the resulting roughly exponential growth
quickly leads to separations so large that the linear approximation fails. In
this contribution we develop the simplest model of divergence to account
for the later, nonlinear growth of the separation between neighbouring
solutions. We shall see that the time dependence changes from roughly
exponential to roughly power-law, and that the timescale changes from
roughly the crossing time to nearly the two-body relaxation timescale, tr.
This is the timescale on which the energies of the individual bodies vary
significantly. Standard theory (2, 6) shows that

tr ’
N
lnN

tcr (5)

for systems of the general kind considered here.
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2. A MODEL OF DIVERGENCE

2.1. Linear Growth of Errors

In this section we introduce a toy model for the divergence of neigh-
bouring orbits. Though it gives much insight into the physics of the
problem, many details are omitted. In the first instance we apply it to the
linear regime in which the approximate Eq. (4) are valid. In this regime
more elaborate models have been constructed by Goodman et al. (3)

We make the following assumptions. As in the theory of two-body
relaxation (2, 6) we assume that the trajectory of a particle is nearly rectili-
near, except for occasional two-body encounters (Fig. 2). We suppose that
the important encounters are in the small-angle scattering regime, such that
p± Gm/v2 where p is the impact parameter and v is the relative velocity of
the two particles. In computing the effect of one encounter, we suppose we
can treat the scatterer as fixed. We also suppose that successive encounters
can be treated as if motion takes place on one plane, and that the differ-
ence between two orbits is measured by the difference in the impact
parameter, dp. We assume that all particles have the same mass m. Finally,
we suppose that the system is in virial equilibrium (see Binney and
Tremaine (2)), which implies that

V2 ’
GmN
R
. (6)

Here the symbol ’ means ‘‘is of order,’’ i.e., that the relation is approxi-
mate, and any numerical coefficient is ignored. Thus v ’ V, for example.
In the small-angle scattering regime the maximum acceleration of the

moving particle is of order Gm
p2
and the duration of the encounter is of

order pV . Thus the change in velocity is of order
Gm
pV , and so the angular

deflection is of order Gm
pV2
(Fig. 2). After the scattered body has travelled

Fig. 2. Two successive encounters.
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a further distance D to its next encounter, its spatial deflection is of
order GmD

pV2
.

Now suppose the body had approached the first encounter on a paral-
lel path at a slightly different impact parameter p+dp. Then, at the time of
the second encounter, its position would have been displaced by a distance
of order dp+GmD

p2V2
dp. The first term is the displacement that would have

occurred even in the absence of the first encounter. The second occurs
because, if dp > 0, the body has been deflected less by the first encounter.
(The differential approximation used for this term is not valid unless
|dp|° p; this is the approximation which restricts the present theory to the
linear regime in which Eq. (4) is valid.) The total displacement measures
the change in impact parameter at the second encounter. Hence the varia-
tion in p is multiplied by a factor of order (1+GmD

p2V2
) per encounter.3

3 In a fully three-dimensional treatment this becomes a matrix equation.

Now we consider the cumulative effect of several encounters within a
restricted range of impact parameters around the value p, e.g., from p/2
to 2p, but ignoring other encounters. We start at some time t and consider
the effect of encounters in a subsequent interval Dt, chosen sufficiently
large that several encounters occur within this interval. The actual number
of such encounters is of order DtVD , and so the variation in the orbit is given

4

4We ignore two complications which tend to counteract each other: (i) the persistence of
effects of early encounters, and (ii) partial cancellation of successive encounters by their
vectorial character.

by

dr(t+Dt) ’ dr(t)11+GmD
p2V2
2
DtV
D

.

Also it is clear that p2Dn ’ 1, where n is the number of particles per unit
volume, and so

dr(t+Dt) ’ dr(t)11+ Gm
p4nV2
2DtVnp

2

. (7)

It follows from the relation n ’ N
R3
and Eq. (6) that

dr(t+Dt) ’ dr(t)11+ R4

p4N2
2
Dt
tcr

Np2

R2 , (8)

where we have used Eq. (2).
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Encounters take place at a wide range of impact parameters p.Writing
Eq. (8) as

ln dr(t+Dt)− ln dr(t) ’
Dt
tcr
N
p2

R2
ln 11+ R4

p4N2
2 (9)

we see that those with p° RN−1/2 are individually very effective but too
rare to dominate, whereas those with p± RN−1/2 lose out by being indi-
vidually ineffective, despite being very numerous. Encounters at impact
parameter p ’ RN−1/2 are most effective cumulatively, and lead to expo-
nential growth of the deviation dr, on a timescale of order tcr.
Another way of seeing this is to sum the right hand side of Eq. (9)

over all impact parameters p M R. Since this term represents the effect of
encounters with impact parameters in a range near some value p, the
summation can be accomplished by multiplying by dp/p and integrating.
The result is that

ln dr(t+Dt)− ln dr(t) ’
Dt
tcr
.

This is equivalent to the result obtained by ignoring all encounters except
those near p ’ RN−1/2.
Many factors have been omitted from this simple model, including the

distribution of velocities and density, and the curved orbits of bodies
between encounters. Nevertheless, the results of more detailed models and
numerical simulations, already quoted, confirm our basic result, except for
a very weak N-dependence.

2.2. Nonlinear Growth of Separation

The above theory is valid as long as dr° p, and here we may take for
p the impact parameter for the most effective encounters, i.e., p ’ RN−1/2.
Suppose we are interested in growth of errors in an N-body integration of
Eq. (1), for a system which has been scaled so that R ’ 1. Then we may
have dr(0) ’ 10−16 for a double precision calculation, and so the linear
approximation breaks down after about 30te, i.e., between one and two tcr,
by Eq. (3).
Thereafter we suppose that encounters with impact parameters p° dr

are ineffective. Then we may estimate the growth of the separation of
neighbouring orbits by substituting p ’ dr(t) in Eq. (9), which gives

ln dr(t+Dt)− ln dr(t) ’
Dt
tcr

Ndr(t)2

R2
ln 11+ R4

N2dr(t)4
2 .
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We are in a regime where dr(t) N RN−1/2, and so we can approximate

ln dr(t+Dt)− ln dr(t) ’
Dt
tcr

R2

Ndr(t)2
. (10)

Since the term on the right depends on t, we can no longer conclude that
ln dr(t) increases linearly with t. To determine its time dependence we
rewrite Eq. (10) as a differential equation, i.e.,

d
dt
ln dr(t) ’

1
tcr

R2

Ndr(t)2
.

Ignoring for the moment the distinction between ‘‘’’’ and ‘‘=,’’ we obtain
the solution

dr(t)=1dr(t0)2+2
t−t0
tcr

R2

N
21/2,

where t0 is a constant, which may be interpreted as the time at which the
growth of errors enters the nonlinear regime.
Well into the nonlinear regime we now see that dr(t) ’ R( tNtcr)

1/2. In
order to interpret this result we shall estimate the difference in binding
energy, e, of the body between the two neighbouring solutions. Now
e ’ GNm

R , and we can estimate de ’
GNmdr
R2
. (We could obtain a similar esti-

mate from consideration of the difference in velocity.) Hence dee ’ (
t
Ntcr
)1/2.

Now the two-body relaxation time, tr, may be estimated by Eq. (5), and so
de
e ’ (

t
tr
)1/2 if we ignore a logarithmic dependence on N.

3. DISCUSSION

Recall that we are considering two solutions of Eq. (1) starting with
slightly different initial conditions. Suppose that we measure the separation
of the two solutions by the separation in energy, de, of a typical body.
What we have concluded is that, for at most a few crossing times, de(t)
grows exponentially, with an e-folding time comparable with tcr itself.
Thereafter de(t) approaches a power law dependence, varying as t1/2, on a
timescale of the relaxation time.
The standard theory of relaxation tells us how e (the energy of a given

star) evolves on a single solution of the N-body equation. If we ignore
variations of e inside an encounter, e performs a random walk on the
timescale tr, and the change in e varies as t1/2. (We here ignore the role of
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Fig. 3. Mean square energy difference in numerical integrations with N=256, as a function
of time. The meaning of the different curves is stated in the text. The results plotted are the
mean of four independent runs. In the adopted units the crossing time is 2`2.

‘‘dynamical friction’’, which corresponds to the drift term in a Fokker–
Planck description of the relaxation. (2, 6))
Figure 3 illustrates these points using data from numerical N-body

integrations with N=256. Two systems were integrated simultaneously
using identical initial conditions except for a small difference in one coor-
dinate of one particle. The solid curve (a) shows the mean square difference
in the energies of the N particles.5 The corresponding initial conditions

5 Similar results have been presented by Merritt (7) for motion in the gravitational field of N
fixed bodies.

were also used for simultaneous integration of the variational equations,
and the long-dashed curve (b) shows the corresponding mean square varia-
tion of energy. This grows nearly exponentially, but is followed by (a) for
only a limited time of order a crossing time. The short-dashed curve (c)
shows the mean square difference between the initial energy and the energy
at time t, again averaged over the N particles. This is caused by two-body
relaxation. Evidently curve (a) departs from curve (b) around the point
where the latter crosses curve (c), and then nearly follows (c). In this way
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we see that the growth of errors, which is exponential only in the linear
regime, is consistent with the theory of two-body relaxation.
The exponential divergence slows down to a power-law growth

because close encounters become increasingly ineffective. There is a geo-
metric way of looking at this. Krylov (8) showed that the divergence could
be understood as the behaviour of neighbouring geodesics on a certain
manifold. As two neighbouring geodesics deviate further, their deviation is
influenced less and less by the fine geometrical structure of the manifold
across which they are proceeding.
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